Tek Yönlü Varyans Analizi


Etkisi incelenecek faktör sayısının ikiden fazla olması durumunda hipotez testleri varyans analizi metodu kullanılarak, F dağılışına göre yapılır. Örneğin gözleme ya da deneye dayanan bir çalışmada üç ya da daha fazla ortalamanın eşitliğini varyans analizi ile test edebiliriz.

Genel Varsayımlar:

Yukarıdaki tipte hipotezlerinin testinde varyans analizi tekniği kullanılabilmesi için aşağıdaki varsayımların kabul edilmesi gerekmektedir.

  • Her popülasyonda bağımlı değişken normal dağılım gösterir.
  • Bağımlı değişkenin varyansı her topluluk için aşağı yukarı aynıdır.
  • Örnek verileri birbirinden tamamen bağımsızdır.

Varyans Analizinin Temel Mantığı

Ho hipotezi doğru ise, bu topluluklardan bağımsız olarak alınan  örneklerin ortalamaları da birbirine yakın olmalıdır. Ya da Ho hipotezi yalnış ise, örnek ortalamalarının birbirinden farklı olması beklenir.

Not: Hemen belirtelim ki, her iki durumda da yanılma payları vardır. Hatırlayınız:

  • Ho doğru iken, örnekleme hatasına bağlı olarak  örneklerin ortalamaları birbirinden farklı çıkar ve sonuçta Ho reddedilirse, bu tip hatalara 1.Tip Hata denir. Bu tip bir hata yapma olasılığı testin belirginlik derecesi olan alfa (genellikle 5% alınır) eşittir. Daha açık söylemek gerekirse, bir fabrikadaki toplam kalite bilgi seviyesi, o fabrikanın yerine göre farklılık göstermediği halde, 1. tip hata sonucu fabrika yerinin o fabrikadaki toplam kalite bilgi seviyesini etkileyen belirgin bir değişken olduğuna karar verilir.
  • Ya da Ho yanlış olsun ve yine örnekleme hatası sonucu  örneklerin ortalamaları birbirinine çok yakın çıksın. Bu durumda Ho reddedilemez (çünkü elimizde yeterli delil yok!) ve 2. Tip Hata yapılarak yine yanlış karar verilir. Bu tip bir hata yapma olasılığı 0<beta<1 ile gösterilir ve beta değeri verilen belli mi, i=1,2,3 değerleri için ayrıca koşullu olasılık (conditional probability) kavramları kullanılarak hesaplanır.

Örnek ortalamalarının birbirine ne kadar yakın (ya da farklı) olduğunu ölçmek için 2 ayrı yöntemle ana kütle varyansı, s2 tahmin edilir.

Ana kütle Varyansının Tahmini Değeri

Bu yöntemlerin birinde Ho doğru kabul edilir, diğerinde ise yanlış kabul edilir. Eğer Ho gerçekten doğru ise, bu iki şekilde bulunan tahmini değerler birbirine çok yakın olacaktır ve sonuçta Ho reddedilemeyecektir. Aksi taktirde bu tahmini değerler birbirinden uzak olacak ve Ho reddedilecektir.

1. Yöntem:

Ho’ın doğru kabul edildiği durumda  Popülasyon varyansının tahmini değeri (Between Treatments Estimate of Population Variance)

Eğer Ho doğruysa, tüm örneklerin aynı popülasyondan alındığını düşünebiliriz, yani  için sadece bir dağılım fonksiyonu vardır.

burdan sonrası wordpress’in sınırlı  karakter desteğinden dolayı resim olarak devam ediyorum.

2. Yöntem:

Ho’ın yanlış kabul edildiği durumda  popülasyon varyansının tahmini değeri (Within Treatments Estimate of Population Variance)

Ho yanlış ise örneklerin en az ikisinin ortalamaları farklı olacağından, bunların farklı topluluklardan geldiği varsayılır. Diyelim ki hepsi farklı topluluk olsun. Yani her topluluk kendi içinde farklı ortalamalar, ancak aynı varyans s2 ile normal dağılım gösteriyor.

yazının devamını daha sonra ekleyeceğim :))

27 Haziran 2010 tarihinde Genel, İstatistik içinde yayınlandı ve , , olarak etiketlendi. Kalıcı bağlantıyı yer imlerinize ekleyin. Yorum yapın.

Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Google+ fotoğrafı

Google+ hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Connecting to %s

%d blogcu bunu beğendi: