Lojistik Regresyon Analizi


Lojistik regresyon; cevap değişkeninin kategorik ve ikili, üçlü ve çoklu kategorilerde gözlendiği durumlarda açıklayıcı değişkenlerle neden sonuç ilişkisini belirlemede yararlanılan bir yöntemdir. Açıklayıcı değişkenlere göre cevap değişkeninin beklenen değerlerinin olasılık olarak elde edildiği bir regresyon yöntemidir.

Basit ve çoklu regresyon analizleri bağımlı değişken ile açıklayıcı değişken  ya da değişkenler arasındaki matematiksel bağıntıyı analiz etmekte kullanılmaktadır. Bu  yöntemlerin uygulanabileceği veri setlerinde bağımlı değişkenin normal dağılım göstermesi, bağımsız değişkenlerinde normal dağılım gösteren toplum ya da toplumlardan çekilmiş olması ve hata varyansının  parametreli normal dağılım göstermesi gerekmektedir. Bu ve benzeri koşulların yerine getirilmediği veri setlerinde basit yada çoklu regresyon analizleri uygulanamaz.

Lojistik regresyon analizi, sınıflama ve atama işlemi yapmaya yardımcı olan bir regresyon yöntemidir. Normal dağılım varsayımı, süreklilik varsayımı ön koşulu yoktur.

Bağımlı değişken üzerinde açıklayıcı değişkenlerin etkileri olasılık olarak elde edilerek risk faktörlerinin olasılık olarak belirlenmesi sağlanır

Ayırma (diskriminant) analizi, verilerin sınıflandırılması ve belirli olasılıklara göre belirli sınıflara atanmasını sağlayan bir yöntemdir. Veri setindeki değişkenlerin sınıflamaya etkilerini ayırma analizi ile belirlemek mümkündür. Fakat ayırma analizi çok değişkenli normal dağılım varsayımını ön koşul kabul etmektedir.

Lojistik regresyon, oluşturulan lojistik modellere göre parametre tahminleri yapmayı amaçlar. Lojistik regresyonda modellere ortak değişkenler de katmak mümkündür. Böylece ortak değişkenlere göre düzeltilmiş Y değerlerinin tahminleri yapılabilir.

Lojistik regresyon, bağımlı değişkenin tahmini değerlerini olasılık olarak hesaplayarak, olasılık kurallarına uygun sınıflama yapma imkanı veren bir istatistiksel yöntemdir. Lojistik regresyon tablolaştırılmış ya da ham veri setlerini analiz eden bir yöntemdir.

Lojistik regresyon analizinde üç temel yöntem vardır.

  • İkili lojistik regresyon  (BLOGREG,binary logistik regresyon).
  • Ordinal lojistik regresyon (OLOGREG,ordinal logistik regresyon).
  • İsimsel lojistik regresyon (NLOGREG, nominal logistik regresyon).

26 Temmuz 2010 tarihinde Genel, İstatistik içinde yayınlandı ve , , , olarak etiketlendi. Kalıcı bağlantıyı yer imlerinize ekleyin. Yorum yapın.

Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Google+ fotoğrafı

Google+ hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Connecting to %s

%d blogcu bunu beğendi: