Lojistik Regresyon


Diskriminant analizi ve çapraz tablolara alternatif olarak en çok kullanılan yöntemlerden birisi olan lojistik regresyon, normal dağılım ve ortak kovaryans varsayımları karşılanmadığı zamanlarda kullanılmaktadır. Lojistik regresyonun bu varsayımları karşılamamasında ki neden analizin yapılacağı veri setindendir. Yani bağımlı değişken sıralayıcı ve sınıflayıcı ölçekte olduğundan dolayıdır, yalnız bağımsız değişkenler sürekli yada kategorik ölçekte de olabilirler. Lojistik regresyon modeline sınırlayıcı yada kategorik ölçekte bir değişken eklenmek istendiğinde değişkenlerin üzerinde bir takım dönüşümler yapılmalıdır. Bu dönüşümler bağımlı değişken ile bağımsız değişken arasında doğrusal bir ilişkiyi verecek bir şekilde link fonksiyon, lojit veya probit dönüşümlerinden birisi olabilir. Örneğin bağımsız değişkenlerde 1 birimlik artışın bu dönüşümler sonucunda elde edilin sonuç ile modeldeki katsayısı çarpımı kadar bağımsız değişkende bir değişliğe neden olduğunu söyleyebiliriz. Şunu da belirtmek gerekir ki; modelde değişkenler üzerinde dönüşümler olduğundan dolayı değişkenlerin katsayılarının tahmininde en çok olabilirlik yöntemi kullanılır.

Elde edilen modelin bir anlam ifade etmesi için modeldeki bağımsız değişkenlerin katsayılarının anlamlılıklarının sınanması gerekmektedir. Sınamalar, en iyi modelin kurulmasını en az değişken ile yapılmasında yön göstericidirler.     Lojistik regresyon modeli, klasik regresyon modeli gibi olmadığı için katsayıların sınanmasında olabilirlik oran testi (likelihood ratio test), Score testi ve Wald testleri kullanılır. Burada asıl sorun; modelin bağımlı değişken hakkında incelenecek değişkenin, incelenen değişken olmayan modelden daha fazla bilgi içerip içermediğidir.

Lojistik regresyon modelindeki katsayılar yorumlanır iken odds (farklılıklardan) ve odds oranı (farklılıklar oranı) dan yararlanılır. Odds lar lojit dönüşümünün doğal logaritmalarının alınmış halidir. Odds oranı ise x=1 için hesaplanan odds un x=0 için hesaplanan odd a oranıdır. Farklılıklar oranının doğal logaritması ise log odds oranını verir. Modele dahil edilecek değişkenlere ise olabilirlik oranlarına ve Wald istatistikleri yorumlanarak karar verilir.

Lojistik regresyona getirilen eleştirilerden birisi de değişken sayısı artıkça model kurmanın zorlaşmasıdır. Yani değişken sayısı artıkça yapılacak işlem artmaktadır. Bu tür işlemleri yapmak ise zannedildiği kadar kolay değildir. Ayrıca değişken sayılarının artması tahmin edilen standart hataların da yüksek çıkmasına neden olmaktadır. Bu da veri setinin ana kütlesine bağımlılığı artırmaktadır.

03 Mayıs 2011 tarihinde veri analizi, İstatistik içinde yayınlandı ve , , , , , , , , , , olarak etiketlendi. Kalıcı bağlantıyı yer imlerinize ekleyin. Yorum yapın.

Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Google+ fotoğrafı

Google+ hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Connecting to %s

%d blogcu bunu beğendi: