Kategori arşivi: Diğerleri

Kointegrasyon Analizi


Zaman serilerinde karşılaşılan en önemli sorun, serilerin zamanın etkisini üzerinde taşımaları ve zamanla birlikte artma eğiliminde olmalarıdır. Bu durum, değişkenler arasında ilişkilerde sahte regresyonlara sebep olmaktadır.  Bu durumda ise t, F vb. ters sonuçlarını gerçekte anlamlı olmadığı halde anlamlı olarak gözükmektedir. Seriler arasında zamanın etkisinden arındırılmış gerçek ilişkileri ortaya koymak için, öncelikle serilerin durağan hale getirilmesi gerekir. Genellikle zaman serilerinin birinci yada ikinci farkı alınarak seri durağan hale gelmektedir. Yine serinin durağanlaşması için serinin logaritması, logaritmasının farkının alınması, DF, ADF gibi istatistiklerde kullanılır.

 

Durağan olmama, değişkenin zaman içerisindeki seyrinin beklenen değer etrafında toplanmamasına yol açar. Bu nedenle değişkene ilişkin sağlıklı tahminler yapılabilmesi için serinin durağanlaştırılması gerekmektedir. Eğer stokastik bir süreç mevcut ise, değişken için fark alma işlemi uygulanması gerekir. Fark alma, değişkene ilişkin uzun dönem bilgisinin kaybolmasına yol açar. Çünkü fark alma uzun dönem çözümüne izin vermez. İki değişkenin yer aldığı modelde, değişkenlerin doğrusal bileşimi durağansa, farklarını almak spesifikasyon hatasına yol açar.

 

Bu noktadan hareketle, makro ekonomik çalışmalarda zaman serilerinin birçoğunun durağan olmadığı gerçeği, dikkatleri kointerasyon analizine yöneltmiştir. Gerçekte tek başlarına durağan olmayan zaman serilerinin, belirli bir integre seviyesinde doğrusal bileşimlerinin durağan  bir süreç oluşturduğu kointerasyon analizi ile değişkenler arasında uzun dönem ilişkiler ortaya konulabilmektedir. Bu durumu basit bir modelle açıklayalım;

 

Yt= β0+β1 Xt

 

Yukarıdaki modelde yer alan iki değişkeni farkları alınmak suretiyle durağan iki seri olduğunu varsayalım. Bu iki serinin düzey değerleri ile yapılan analizlerde, elde edilen test sonuçları sahte regresyon olduğu gösterecektir. Gerçekte anlamlı olmayan t ve F istatistikleri anlamlı gözükecek ve yanıltıcı sonuçlar elde edilecektir. Farkı alınarak yapılan analizlerde ise uzun dönem bilgisi yok olacaktır. Seriler arasında kointegrasyon ilişkisi araştırıldığında, uzun dönemde birlikte hareket eden bir yapı söz konusu ise, modele ilişkin hata terimi durağan yapıya sahip olacaktır.

 

ut=Yt – β0 – β1 Xt

ut~N(O;σ2)

(Not: σ2 varyansı ifade etmektedir.)

 

Burada hata terimi, hata düzeltme modelinde yer alarak, dengesizlik hatası adını alacaktır. Bu şekilde kısa ve uzun dönem bilgileri arasında bir ilişki kurulmuş olacaktır. Böylece serilerin farklarını almak yerine düzey değerleri ile kurulan ilişki, uzun dönem bilgisini yansıtmayacaktır. Düzey değerleri ile elde edilen regresyon artık sahte değil, anlamlıdır. Seviyesinde durağan seriler arasında kointegrasyon ilişkisinin araştırılmasına gerek yoktur.

 

Durağan olmayan serilerin farklının alınması nedeniyle, değişkenler arasında kısa dönemler arasında gözlemlenecek ilişkiler, bu yöntemin kullanılması ile uzun döneme yayılmaktadır. Değişkenler kısa dönemde kendilerine özgü şoklarla değil, uzun dönemde değişkenleri ortak olarak ifade edilecek stokastik trendlere sahip olacaklardır. Böylece uzun dönemde değişkenler arasında gözlenen ilişki ve elde edilen uzun dönem katsayıları hata düzeltme modellerinde yerine koyularak, dinamik denge durumuna ulaşılacaktır.

Reklamlar

Faktör Analizinin Uygunluğunun Değerlendirilmesi


Faktör analizi yapmadan önce verisetinin korelasyon matrisinde korelasyonları %30’dan küçğk olan değişkenler verisetinden çıkarılmalıdır. Böylece veriseti faktör analizine daha uygun hale gelecektir. bundan sonraki aşamada ise kısmı korelasyon katsayılarına bakılmalıdır. Eğer kısmı korelasyon katsayıları yüksekse, veriseti iyi temsil edilemeyecektir. bu durumda da faktör analizi uygulanmaması gerekmektedir.

Faktör analizinin uygunun araştırması için bir test yaklaşımıda literatürde vardır. bu yaklaşımda korelasyon matrisinin birim matrise eşit olup olmadığı sınanır. Bu yaklaşım, Bartlett küresellik testidir.bu test, verilerin çok değişkenli normal dağılan anakütleden geldiği ve örneklem büyüklüğünün 150’den büyük olduğu örneklerde geçerlidir. Test sonucunda anlamlılık % 5’den (ki % 5 araştırmacının kendi kararına bağlıdır.) büyük çıkarsa faktör analizi uygulanmamalıdır.

Faktör analizinin uygunu değerlendirmek için bir başka test de KMO (Kaiser-Meyer-Olkin) testidir. Aslında KMO bir test değildir. Bir ölçüttür. Hesaplamalar sonucunda KMO değeri 0 ile 1 arasında değişen değerler almaktadır. Bu oran bire ne kadar yaklaşırsa veriseti faktör analizine o kadar uygundur. KMO ölçüsü istatistiksel bir test olmadığından bu oran için bir takım kısıtlamalar getirilmiştir. KMO değeri, örnek birim sayısı, ortalama korelasyonlar, değişeken sayısı artıkça ve faktör sayısı azaldıkça KMO değeri bire yaklaşır. Genelde KMO değeri için 0.80’den büyük veya bazı cevrelerce (yazılımcılar) de 0.60’dan büyük olması yeterli görülmüştür.

Merhaba


Artık bende blog oluşturmaya başladım. 🙂